Course overview

Understanding the links between activity in neural circuits and behavior is a fundamental problem in neuroscience. Attacking this problem requires detailed information about the cell types in neural circuits and their connectivity, and recording the spatiotemporal patterns of activity in the intact brain during behaviour. Furthermore, probing causal relationships between cellular and circuit-level processes and behaviour requires perturbation of specific elements of the circuit in a temporally and spatially precise manner.

This course will highlight the new anatomical, genetic, optical, electrophysiological, optogenetic, and pharmacogenetic approaches that are available for addressing these challenges. The faculty will discuss tool development through to their implementation in diverse model systems, including mice and zebrafish. Students will learn the potential and limitations of these techniques, allowing them to both design and interpret experiments correctly.

Course directors

Michael Hausser

Course Director

Wolfson Institute for Biomedical Research, UCL, UK

Claire Wyart

Course Director

Paris Brain Institute, ICM, France

Tiago Branco

Course Director

Sainsbury Wellcome Centre, UK

Susana Lima

Course Director

Champalimaud Research, Portugal

Keynote Speakers

Isaac Bianco, University College London, UK
Ed Boyden, Massachusetts Institute of Technology, USA
Michael Brecht, Bernstein Center for Computational Neuroscience, Germany
Megan Carey, Champalimaud Research, Portugal
Eugenia Chiappe, Champalimaud Research, Portugal
Winfried Denk, Max Planck Institute of Neurobiology, Germany
Emily Dennis, HHMI, Janelia, USA
Valentina Emiliani, Vision Institute, France
Ken Harris, University College London, UK
Greg Jefferis MRC Laboratory of Molecular Biology, UK
Na Ji, University of California, USA
Mackenzie Mathis, EPFL, Switzerland
Marta Moita, Champalimaud Research, Portugal

Michael Orger, Champalimaud Research, Portugal
Marius Pachitariu, HHMI, Janelia, USA
Darcy Peterka, Columbia University, USA
Pavan Ramdya,  EPFL, Switzerland
Ana João Rodrigues, ICVS, Minho University, Portugal
Botond Roska, Institute of Molecular and Clinical Ophthalmology, Switzerland
Nick Steinmetz, University of Washington, USA
Carsen Stringer,  HHMI, Janelia, USA
Karel Svoboda, HHMI, Janelia, USA
Scott Waddell, Oxford University, UK
Chris Xu, Cornell University, USA
Ofer Yizhar, Weizmann Institute of Science, Israel

Instructors

This list will be updated soon

Course content

Topics & Techniques

The course combines a lecture series featuring top speakers from around the world with a practical “hands-on” introduction to the latest methods for probing neural circuits, using drosophila, zebrafish, and (transgenic) mice. The course will focus on anatomy and connectivity, recording and manipulation, and the relation between circuits and behavior. During the course, each student will carry out a ‘mini-project’, executed under the guidance and supervision of experienced researchers and teaching assistants. Techniques used during the course include:

Drosophila

  • manipulation of neural circuits with optogenetics in the context of naturalistic behaviors;

Zebrafish

  • optogenetic manipulation using digital holography;
  • behavior & population calcium imaging using 2-photon microscopy;

Mice

  • In vivo 2-photon and 3-photon imaging;
  • all-optical interrogation (simultaneous 2-photon optogenetics and 2-photon imaging);
  • miniscope imaging;
  • extracellular recordings of neural population activity using Neuropixels probes in head-fixed and freely behaving animals;
  • intracellular electrophysiological recordings using whole-cell patch-clamp;
  • viral tracing, histology preparation, expansion microscopy, and fluorescence imaging techniques.

For more information on the course programme, you can visit the past course website.

Champalimaud Centre for the Unknown, Portugal

The Champalimaud Foundation is a private, non-profit organization, established in 2005 and dedicated to research excellence in biomedical science. Completed in 2010, the Champalimaud Centre for the Unknown is a state-of-the-art centre that houses the Champalimaud Clinical Centre and the Champalimaud Research, with its three parallel programs – the Champalimaud Neuroscience Programme, the Physiology and Cancer Programme, and the Experimental Clinical Research Programme.
Initially focused on a system and circuit approach to brain function and behavior, the Centre expanded to incorporate molecular and cell biological expertise. The Centre comprises 26 research groups (circa 400 researchers) leading independent curiosity-based research.

Facilities
The Centre provides Facilities dedicated for Training, some in their entirety, for use by the CAJAL Advanced Neuroscience Training Programme. These include the Teaching Laboratory, a fully equipped open lab space for 20-30 students that can be dynamically reconfigured to support a full range of neuroscience courses. It also overlooks, via floor to ceiling windows, a tropical garden and the river. The experimental spaces include: Imaging Lab: A dark-room containing a full size optical table is used for advanced imaging setups (two-photon microscopy, SPIM, etc.) and custom (course-designed) optical systems.

Registration

Fee : 3.500 € (includes tuition fee, accommodation and meals)

Application closed on 24th January 2022

The CAJAL programme offers 4 stipends per course (waived registration fee, not including travel expenses). Please apply through the course online application form. In order to identify candidates in real need of a stipend, any grant applicant is encouraged to first request funds from their lab, institution or government.

Kindly note that if you benefited from a Cajal stipend in the past, you are no longer eligible to receive this kind of funding. However other types of funding (such as partial travel grants from sponsors) might be made available after the participants selection pro- cess, depending on the course.