This is a Cajal NeuroKit course that combines online lectures about fundamentals and advanced neuroscience topics with hands-on and physical experiments.

Researchers from everywhere can participate because the course material is sent home in a kit box.

This course is now at its third edition.

Course overview

Any data we collect has been shaped by the system we used to record it. Understanding the tools involved in data acquisition gives you the confidence to make informed experimental design choices, and the freedom to combine and try new approaches while building your dream setup.

In this course, we will develop your understanding of electrophysiology data acquisition. In terms of hardware, you will learn how acquisition systems can amplify tiny signals and filter out noise. You’ll test this understanding by building your own system to measure muscle and heart signals. In software, you will encounter synchronisation considerations, as we add incoming datastreams and build an increasingly complex experimental design.

Don’t be discouraged if you secretly panic at the mention of capacitance, this course starts from the very basics. Advanced students can make the final project as challenging as they like.

Designed by Open Ephys and Open Ephys Production Site, this course will have an open-source flavour and encourage you to try new ideas, share your insights, and connect with the open-source community.

Course sponsors

What will you learn?

By the end of the course, you will:

  • be familiar with the electronic building blocks of acquisition systems

  • be able to model and build circuits to amplify and filter incoming signals

  • be able to use the Bonsai programming language to stream data and run closed-loop experiments with multiple datastreams


Alexandra Leighton

Alex Leighton

Course Director

Open Ephys Production Site, PT

Jakob Voigts

Course Director

MIT and Open Ephys, USA

Filipe Carvalho

Course co-director

Open Ephys Production Site, PT


Aarón Cuevas López – Universitat Politècnica de València, ES

Joana Neto, FCT NOVA, PT

Jonathan P. Newman – MIT and Open Ephys, USA

Josh Siegle, Allen Institute, USA


Day 1 – Introduction

  • What are we trying to measure? Electrical signals in the brain and ways to record them.

  • How can we collect these signals without changing them? Considerations when building an acquisition system.

  • Using a simulator to visualise electrical circuits online and make predictions about real-world circuits.

  • Using the breadboard and components in your kit to test your understanding of electronics concepts.

Day 2 – Impedance

  • Using microcontrollers to acquire physiological data.

  • What is impedance? Understanding how we protect our signals while measuring them.

  • Understanding the function and limitations of operational amplifiers.

Cajal Images -Day 1
Cajal- Day 3

Day 3 – Data Acquisition

  • Understanding Instrumentation Amplifiers.

  • Simulating, building and testing low & high-pass filters.

  • Visualise your own EMG/ECG data using the Bonsai programming language.

Day 4 – Synchronizing Datastreams

  • Expanding on Bonsai – controlling cameras, receiving other datastreams.

  • Understanding closed-loop experiments, timestamp considerations, and synchronising datastreams.

  • Designing student projects and group feedback on plan.

Day 5 – Project and Open-Source Neuroscience

  • Open Ephys – open-source hardware & software development.

  • An overview of open-source community projects.

  • Student project presentation.

Cajal- Day 4

The course will be held from 14:00 to 18:00 GMT.


Registration fee: 500€ per person (includes shipping of the course kit, pre-recorded and live lectures before and during the course, full attendance to the course, and course certificate).

Registration fee for a group: 500€ for one person and one course kit + 150€ per additional person (without the course kit). For this course, groups can be up to 3 persons maximum sharing  1 single kit.

Applications are closed. The course will be held again. You can express your interest in the course and we will contact you once the application call is open again.

To receive more information about this NeuroKit, email