Tag Archives: training

Optogenetics, chemogenetics, and biosensors for neural circuit research

Course overview

Genetically encoded tools for neuroscience enable precise observation and manipulation of defined neural cell types, in behaving animals. This course provides both breadth and depth in the theoretical and practical application of these tools across a variety of classes including experimental designs, and with an emphasis on hands-on experience.

After completing this course, a student should expect to be knowledgeable about a wide range of molecular tools, have experience with multiplexed read/write experimental design, understand how to integrate optical hardware with rodent behavior, and appreciate nuances between 1-photon and 2 photon implementations. Interpretation and data analysis are integrated across the course.

Course directors

Weizmann Institute of Science, Israel

Bordeaux University, France

University of Texas, Austin, USA

Keynote Speakers

Camilla Bellone – Univ. of Geneva, Switzerland
Christina Kim – UC Davis, USA
Karl Deisseroth – Stanford University, USA
Mackenzie Mathis – EPFL, Switzerland
Marie Carlen – Karolinska Institute, Sweden
Michael Bruchas – Univ. of Washington, USA
Simon Wiegert – Univ. Heidelberg, Germany
Stephan Herlitze – Bochum University, Germany
Valentina Emiliani – Institut de la Vision, France
Cyril Herry – Bordeaux University, France
Yaniv Ziv – Weizmann Institute of Science, Israel

Instructors

Daniel Jercog – Univ. of Copenhagen, Denmark
Eyal Bitton – Weizmann Institute of Science, Israel
Francois Blot – Institut de la Vision, France
Inbar Saraf-Sinik – Weizmann Institute of Science, Israel
Jesse Muir – UC Davis, USA
Jonas Wietek – Weizmann Institute of Science, Israel
Mario Carta – Univ. of Bordeaux, France
Meryl Malezieux – Max Planck Institute, Germany
Nikolas Karalis – Paris Brain Institute, France
Olivia Masseck – Univ. of Bremen, Germany
Pritish Patil – Weizmann Institute of Science, Israel
Quinn Lee – McGill University, Canada
Sean Piantadosi – Univ. of Washington, USA
Steeve Laquitaine – EPFL, Switzerland
Alon Rubin – Weizmann Institute of Science, Israel

Course content

The course will comprise keynote lectures, hands-on expert workshops in experimental sessions and data analysis. Keynote lecturers will provide an introduction to their respective fields and exciting recent findings, while expert workshops will be given by a selected set of instructors. Instructors will work with the students prior to the course to design and plan their experiments in detail.

Each student will have an opportunity to present his/her work in a poster session, and an interactive journal club will provide the students with an opportunity to present and discuss the seminal studies that have shaped modern neuroscience through the introduction of novel techniques. Following the success of a pilot session held in the previous course, we will also hold semi-formal discussions with directors and instructors about career development, scientific “soft skills” and science communication.

Techniques

  • Stereotaxic surgery: viral vector injection, fiberoptic implants, cranial windows
  • Wide-field fluorescence imaging in vivo
  • Two-photon fluorescence imaging in vivo
  • Optogenetic manipulations: somatic and presynaptic excitation/inhibition
  • Building and implanting electrode arrays for in-vivo recordings
  • In-vivo electrophysiological recordings
  • Spike sorting and electrophysiological data analysis
  • In-vitro imaging in cell culture
  • Fiber photometry recordings in behaving mice
  • Design and execution of behavioral experiments
  • Using DeepLabCut for behavioral analysis
neurons green blue

Projects

● Imaging neural activity with open-source miniscopes

● Photo-pharmacological and wireless optogenetic tools

● Thalamocortical processing of memory

● Methods for the development and characterization of genetically encoded biosensors

● Miniscope calcium imaging and analysis of the spatial code in CA1

● Comparing fluorescence-based sensors for dendritic imagining with in vivo 2-photon microscopy

● Activity-based tagging of neurons for functional dissection experiments

● 2-photon fibreoscope for imaging and holographic optogenetics in freely moving animals

● Computational analytical methods to link high-dimensional neuronal population and behavioral data

● Large-scale electrophysiological investigation of circuit dynamics

● Optogenetic silencing of synaptic terminals in freely moving mice

● Analysis of high dimensional neuronal data

(Illumination and equipment for in-vivo set-ups provided by Prizmatix)

Class of 2024

Bordeaux School of Neuroscience, France

The Bordeaux School of Neuroscience is part of Bordeaux Neurocampus, the Neuroscience Department of the University of Bordeaux. Christophe Mulle, its current director, founded it in 2015. Throughout the year, renowned scientists, promising young researchers and many students from any geographical horizon come to the School.
The school works on this principle: training in neuroscience research through experimental practice, within the framework of a real research laboratory.

Facilities
Their dedicated laboratory (500m2), available for about 20 trainees, is equipped with a wet lab, an in vitro and in vivo electrophysiology room, IT facilities, a standard cellular imaging room, an animal facility equipped for behavior studies and surgery and catering/meeting spaces. They also have access to high-level core facilities within the University of Bordeaux. They offer their services to international training teams who wish to organize courses in all fields of neuroscience thanks to a dedicated staff for the full logistics (travels, accommodation, on-site catering, social events) and administration and 2 scientific managers in support of the experimentation.

Registration

Fee : 3.950 € (includes tuition fee, accommodation and meals)

The CAJAL programme offers 4 stipends per course (waived registration fee, not including travel expenses). Please apply through the course online application form. In order to identify candidates in real need of a stipend, any grant applicant is encouraged to first request funds from their lab, institution or government.

Kindly note that if you benefited from a Cajal stipend in the past, you are no longer eligible to receive this kind of funding. However other types of funding (such as partial travel grants from sponsors) might be made available after the participants selection pro- cess, depending on the course.

The Brain Prize Course: Movement and motor control in health and disease

Course overview

The ability to move in an automatic or a goal-directed manner is a crucial function for many living organisms to survive and interact efficiently with their environments. Movements generation depend on the coordinated activity of motor centres that are distributed in the cortex, the basal ganglia, the cerebellum, and the brainstem but that, altogether, shape the descending motor commands sent to the spinal cord which will then execute the appropriate movements by controlling the activity of motoneurons. Any alteration in these systems and/or their interaction will impair the flow of information leading to disastrous motor disorders. In this CAJAL course, we will not only discuss the common organization of motor centres across species (from lamprey to primate) but also the neuronal mechanism and dynamics that underlie spontaneous and voluntary movements as well as how pathological alteration of these activities can lead to detrimental motor performances and disease state.

The goal of this CAJAL course is to instruct promising young neuroscientists to the advanced scientific concepts established in the field of motor control. We will present the latest discoveries that has been made in different species that shed light on how voluntary and goal-directed movements are generated. We will also describe the computational advances and analysis method that has pushed the limit of understanding movement generation. We will provide hands-on training on state-of-the-art methods applied to the study of motor control in the field including motor tracking, optogenetics manipulation, calcium imaging, high-density electrophysiology recording and data analysis. Thus, this course will combine theoretical and methodological courses by keynote speakers and instructors, respectively, with hands-on projects conducted in the Bordeaux School of Neuroscience.

Course directors

University of Copenhagen, Denmark

Paris Brain Institute, France

University of Bordeaux, France

Seminal Lecture

Dr. Réjean Dubuc – Université de Montréal, Canada

Honorary lectures from Brain Prize Winners

Dr. Sylvia Arber – Basel University, Switzerland
Dr. Ole Kiehn – University of Copenhagen, Denmark

Keynote Speakers

Dr. David McLean – Northwestern University, USA
Dr. Claire Wyart – Paris Brain Institute, France
Dr. Lora Sweeney – Institute of Science and Technology A., Austria
Dr. Jonathan Whitlock – KISN, Norway
Dr. Camille Jeunet – INCIA CNRS, Bordeaux University, France
Dr. Marie-Laure Welter – Paris Brain Institute, France
Dr. Joaquim Alves da Silva – Champalimaud CU, Portugal
Dr. Gilad Silberberg – Karolinska Institutet, Sweden
Dr. Claire Meehan – University of Copenhagen, Denmark
Dr. Ian Duguid – University of Edinburgh, UK
Dr. Rune Berg – University of Copenhagen, Denmark
Dr. Nicolas Mallet – IMN CNRS, Bordeaux University, France.

Instructors

Will be announced soon.

Course content

The course will be an intensive 3-week theoretical and practical course with two main goals:

1) Teaching students the theoretical foundation of the techniques (in week 1 and 2).

2) Give them enough hands-on experience to create an experimental mini-project (week 1) that will be carried out (in weeks 2 and 3) so they can establish these methods when they get back to their labs.

Bordeaux School of Neuroscience, France

The Bordeaux School of Neuroscience is part of Bordeaux Neurocampus, the Neuroscience Department of the University of Bordeaux. Christophe Mulle, its current director, founded it in 2015. Throughout the year, renowned scientists, promising young researchers and many students from any geographical horizon come to the School.
The school works on this principle: training in neuroscience research through experimental practice, within the framework of a real research laboratory.

Facilities
Their dedicated laboratory (500m2), available for about 20 trainees, is equipped with a wet lab, an in vitro and in vivo electrophysiology room, IT facilities, a standard cellular imaging room, an animal facility equipped for behavior studies and surgery and catering/meeting spaces. They also have access to high-level core facilities within the University of Bordeaux. They offer their services to international training teams who wish to organize courses in all fields of neuroscience thanks to a dedicated staff for the full logistics (travels, accommodation, on-site catering, social events) and administration and 2 scientific managers in support of the experimentation.

Registration

Fee : 3.950 € (includes tuition fee, accommodation and meals)

Applications will open soon.

The CAJAL programme offers 4 stipends per course (waived registration fee, not including travel expenses). Please apply through the course online application form. In order to identify candidates in real need of a stipend, any grant applicant is encouraged to first request funds from their lab, institution or government.

Kindly note that if you benefited from a Cajal stipend in the past, you are no longer eligible to receive this kind of funding. However other types of funding (such as partial travel grants from sponsors) might be made available after the participants selection pro- cess, depending on the course.

Neuro-vascular function in health and disease

Course overview

The neurovascular unit, composed of vascular cells, glial cells, and neurons is fundamental for the proper function of the brain. The NVU regulates supply of the cerebral blood flow (CBF) and maintains integrity of the blood-brain barrier (BBB).

Dysfunction of the neurovascular unit may result in devastating conditions such as dementia, cerebral ischemia, or brain oedema formation. This advanced experimental course will allow students to gain basic knowledge and hands-on experience on the most important techniques used to study the neurovascular unit, such as in vivo/in vitro high-resolution imaging, magnetic resonance imaging, and rodent models of cerebrovascular disease. The course will also focus on data reproducibility and open science.

Course partner

Course directors

Nikolaus Plesnila

Course Director

Ludwig Maximilian University, Germany

Jérôme Badaut

Course Director

Bordeaux University, France

Catherine Hall

Course Director

Sussex University, UK

Keynote Speakers

David Attwell – University College London, UK
Felipe Barros – Centro de Estudios Científicos, Chile
Serge Charpak – University of Paris, France
Turgay Dalkara – Hateceppe University, Turkey
Ali Ertürk – University of Munich, Germany
Jean Francois Ghersi-Egea – Lyon Neuroscience Research Centre, France
Anne Joutel – University of Paris, France
Martin Lauritzen – University of Copenhagen, Denmark
Malcolm MacLeod – University of Edinburgh, UK
Pierre Magistretti – University of Lausanne, Switzerland
Maiken Nedergaard – University of Copenhagen, Denmark
Mark Nelson – University of Burlington, USA
Andy Obenhaus – USI, USA
Andy Shih – Seattle Children’s Research Institute, USA
Robert Thorne – Denali Therapeutics / University of Wisconsin-Madison, USA
Susanne Van Veluw – Harvard Medical School, USA

Instructors

Silvia Anderle – University of Sheffield
Orla Bonnar – University of Sheffield
Gian-Marco Calandra – Massachusetts General Hospital
Audrey Chagnot – University of Sussex
Yulia Dembitskaia – University of Edinburgh
Maximillian Dorok – Johns Hopkins
Christophe Dubois – université de Bordeaux
Beth Eyre – University of Munich
Severin Filser – University of Munich
Jordan Girard – Université de Bordeaux
Clare Howarth – University of Munich
Malika Ihle – University of Munich
Igor Khalin – University of Munich
Tom Langdon – University of Munich
Guillaume Le Bourdelles – Inscopix
Axel Montagne – Université de Bordeaux
Burcu Seker – Université de Bordeaux
Josh Shrouder – University of Munich
Rebecca Sienel – University of Edinburgh
Jonathan Zapata – Johns Hopkins

Course content

This 3-week long course is a practical “hands-on” introduction to advanced methods for the investigation of the neuro-vascular unit in health and disease. The course will be structured in a theoretical and a practical part.

In the theoretical part world leading scientists in the neurovascular unit (NVU) research will give overview lectures about the function of the NVU and present techniques how to study the NVU in a reproducible manner. Such overview presentations will be paralleled by workshops. In the practical part of the course students will learn surgical techniques necessary to perform animal models of disease and to prepare cranial windows required for the study of cerebral vessels, will be trained to image cerebral vessel function in vitro and in vivo, and will learn how to analyse and display the acquired data.

Techniques

The following techniques will be taught at the course:

  • Chronic cranial window surgery

  • Habituation to the rig for awake imaging

  • Experimental design and presentation of stimuli

  • 2 photon imaging of neurovascular coupling (neuronal activity, blood vessel dilations)

  • 2 photon imaging of vascular function (vasomotion, calcium signals in vessels)

  • Wide field imaging and recording of neurovascular function and metabolism (2D OIS, laser speckle, haemoglobin spectrometry, laser doppler flowmetry – equipment to be loaned by Moor Instruments)

  • Data processing and analysis

Projects

The following projects will be taught at the course:

  • Two-photon microscopy imaging of blood vessels and neuronal activity in vivo

  • Brain imaging in freely moving mice using mini-scopes

  • Two-photon microscopy imaging of stroke

  • Widefield imaging of neurovascular relationships

  • Open Science

  • Correlative light-electron microscopy (CLEM)

  • Vascular signalling in pressurized brain slices

  • BBB permeability in mice and humans by MRI

  • SUSHI – evaluating the brain’s extracellular space by STED microscopy

  • Histological techniques for the analysis of cerebral vessels

  • Brain clearing for the analysis of cerebral vessels

Bordeaux School of Neuroscience, France

The Bordeaux School of Neuroscience is part of Bordeaux Neurocampus, the Neuroscience Department of the University of Bordeaux. Christophe Mulle, its current director, founded it in 2015. Throughout the year, renowned scientists, promising young researchers and many students from any geographical horizon come to the School.
The school works on this principle: training in neuroscience research through experimental practice, within the framework of a real research laboratory.

Facilities
Their dedicated laboratory (500m2), available for about 20 trainees, is equipped with a wet lab, an in vitro and in vivo electrophysiology room, IT facilities, a standard cellular imaging room, an animal facility equipped for behavior studies and surgery and catering/meeting spaces. They also have access to high-level core facilities within the University of Bordeaux. They offer their services to international training teams who wish to organize courses in all fields of neuroscience thanks to a dedicated staff for the full logistics (travels, accommodation, on-site catering, social events) and administration and 2 scientific managers in support of the experimentation.

Registration

Fee : 3.950 € (includes tuition fee, accommodation and meals)

Applications closed on 14 November 2022

The CAJAL programme offers 4 stipends per course (waived registration fee, not including travel expenses). Please apply through the course online application form. In order to identify candidates in real need of a stipend, any grant applicant is encouraged to first request funds from their lab, institution or government.

Kindly note that if you benefited from a Cajal stipend in the past, you are no longer eligible to receive this kind of funding. However other types of funding (such as partial travel grants from sponsors) might be made available after the participants selection pro- cess, depending on the course.

Course sponsors